Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A redox-resistant sirtuin-1 mutant protects against hepatic metabolic and oxidant stress.

Identifieur interne : 000684 ( Main/Exploration ); précédent : 000683; suivant : 000685

A redox-resistant sirtuin-1 mutant protects against hepatic metabolic and oxidant stress.

Auteurs : Di Shao ; Jessica L. Fry ; Jingyan Han ; Xiuyun Hou ; David R. Pimentel ; Reiko Matsui ; Richard A. Cohen ; Markus M. Bachschmid

Source :

RBID : pubmed:24451382

Descripteurs français

English descriptors

Abstract

Sirtuin-1 (SirT1), a member of the NAD(+)-dependent class III histone deacetylase family, is inactivated in vitro by oxidation of critical cysteine thiols. In a model of metabolic syndrome, SirT1 activation attenuated apoptosis of hepatocytes and improved liver function including lipid metabolism. We show in SirT1-overexpressing HepG2 cells that oxidants (nitrosocysteine and hydrogen peroxide) or metabolic stress (high palmitate and high glucose) inactivated SirT1 by reversible oxidative post-translational modifications (OPTMs) on three cysteines. Mutating these oxidation-sensitive cysteines to serine preserved SirT1 activity and abolished reversible OPTMs. Overexpressed mutant SirT1 maintained deacetylase activity and attenuated proapoptotic signaling, whereas overexpressed wild type SirT1 was less protective in metabolically or oxidant-stressed cells. To prove that OPTMs of SirT1 are glutathione (GSH) adducts, glutaredoxin-1 was overexpressed to remove this modification. Glutaredoxin-1 overexpression maintained endogenous SirT1 activity and prevented proapoptotic signaling in metabolically stressed HepG2 cells. The in vivo significance of oxidative inactivation of SirT1 was investigated in livers of high fat diet-fed C57/B6J mice. SirT1 deacetylase activity was decreased in the absence of changes in SirT1 expression and associated with a marked increase in OPTMs. These results indicate that glutathione adducts on specific SirT1 thiols may be responsible for dysfunctional SirT1 associated with liver disease in metabolic syndrome.

DOI: 10.1074/jbc.M113.520403
PubMed: 24451382
PubMed Central: PMC3953247


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A redox-resistant sirtuin-1 mutant protects against hepatic metabolic and oxidant stress.</title>
<author>
<name sortKey="Shao, Di" sort="Shao, Di" uniqKey="Shao D" first="Di" last="Shao">Di Shao</name>
<affiliation>
<nlm:affiliation>From the Vascular Biology Section and.</nlm:affiliation>
<wicri:noCountry code="no comma">From the Vascular Biology Section and.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Fry, Jessica L" sort="Fry, Jessica L" uniqKey="Fry J" first="Jessica L" last="Fry">Jessica L. Fry</name>
</author>
<author>
<name sortKey="Han, Jingyan" sort="Han, Jingyan" uniqKey="Han J" first="Jingyan" last="Han">Jingyan Han</name>
</author>
<author>
<name sortKey="Hou, Xiuyun" sort="Hou, Xiuyun" uniqKey="Hou X" first="Xiuyun" last="Hou">Xiuyun Hou</name>
</author>
<author>
<name sortKey="Pimentel, David R" sort="Pimentel, David R" uniqKey="Pimentel D" first="David R" last="Pimentel">David R. Pimentel</name>
</author>
<author>
<name sortKey="Matsui, Reiko" sort="Matsui, Reiko" uniqKey="Matsui R" first="Reiko" last="Matsui">Reiko Matsui</name>
</author>
<author>
<name sortKey="Cohen, Richard A" sort="Cohen, Richard A" uniqKey="Cohen R" first="Richard A" last="Cohen">Richard A. Cohen</name>
</author>
<author>
<name sortKey="Bachschmid, Markus M" sort="Bachschmid, Markus M" uniqKey="Bachschmid M" first="Markus M" last="Bachschmid">Markus M. Bachschmid</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24451382</idno>
<idno type="pmid">24451382</idno>
<idno type="doi">10.1074/jbc.M113.520403</idno>
<idno type="pmc">PMC3953247</idno>
<idno type="wicri:Area/Main/Corpus">000657</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000657</idno>
<idno type="wicri:Area/Main/Curation">000657</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000657</idno>
<idno type="wicri:Area/Main/Exploration">000657</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A redox-resistant sirtuin-1 mutant protects against hepatic metabolic and oxidant stress.</title>
<author>
<name sortKey="Shao, Di" sort="Shao, Di" uniqKey="Shao D" first="Di" last="Shao">Di Shao</name>
<affiliation>
<nlm:affiliation>From the Vascular Biology Section and.</nlm:affiliation>
<wicri:noCountry code="no comma">From the Vascular Biology Section and.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Fry, Jessica L" sort="Fry, Jessica L" uniqKey="Fry J" first="Jessica L" last="Fry">Jessica L. Fry</name>
</author>
<author>
<name sortKey="Han, Jingyan" sort="Han, Jingyan" uniqKey="Han J" first="Jingyan" last="Han">Jingyan Han</name>
</author>
<author>
<name sortKey="Hou, Xiuyun" sort="Hou, Xiuyun" uniqKey="Hou X" first="Xiuyun" last="Hou">Xiuyun Hou</name>
</author>
<author>
<name sortKey="Pimentel, David R" sort="Pimentel, David R" uniqKey="Pimentel D" first="David R" last="Pimentel">David R. Pimentel</name>
</author>
<author>
<name sortKey="Matsui, Reiko" sort="Matsui, Reiko" uniqKey="Matsui R" first="Reiko" last="Matsui">Reiko Matsui</name>
</author>
<author>
<name sortKey="Cohen, Richard A" sort="Cohen, Richard A" uniqKey="Cohen R" first="Richard A" last="Cohen">Richard A. Cohen</name>
</author>
<author>
<name sortKey="Bachschmid, Markus M" sort="Bachschmid, Markus M" uniqKey="Bachschmid M" first="Markus M" last="Bachschmid">Markus M. Bachschmid</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Animals (MeSH)</term>
<term>Apoptosis (MeSH)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutathione (chemistry)</term>
<term>HEK293 Cells (MeSH)</term>
<term>Hep G2 Cells (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Liver (metabolism)</term>
<term>Liver Diseases (metabolism)</term>
<term>Male (MeSH)</term>
<term>Metabolic Syndrome (metabolism)</term>
<term>Mice (MeSH)</term>
<term>Mice, Inbred C57BL (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Oxidants (chemistry)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidative Stress (MeSH)</term>
<term>Oxygen (metabolism)</term>
<term>Reactive Nitrogen Species (metabolism)</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Signal Transduction (MeSH)</term>
<term>Sirtuin 1 (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Apoptose (MeSH)</term>
<term>Cellules HEK293 (MeSH)</term>
<term>Cellules HepG2 (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Espèces réactives de l'azote (métabolisme)</term>
<term>Espèces réactives de l'oxygène (métabolisme)</term>
<term>Foie (métabolisme)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutathion (composition chimique)</term>
<term>Humains (MeSH)</term>
<term>Maladies du foie (métabolisme)</term>
<term>Mutation (MeSH)</term>
<term>Mâle (MeSH)</term>
<term>Oxydants (composition chimique)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Oxygène (métabolisme)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Sirtuine-1 (génétique)</term>
<term>Souris (MeSH)</term>
<term>Souris de lignée C57BL (MeSH)</term>
<term>Stress oxydatif (MeSH)</term>
<term>Syndrome métabolique X (métabolisme)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Glutathione</term>
<term>Oxidants</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glutaredoxins</term>
<term>Sirtuin 1</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Glutathion</term>
<term>Oxydants</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Sirtuine-1</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Liver</term>
<term>Liver Diseases</term>
<term>Metabolic Syndrome</term>
<term>Oxygen</term>
<term>Reactive Nitrogen Species</term>
<term>Reactive Oxygen Species</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Espèces réactives de l'azote</term>
<term>Espèces réactives de l'oxygène</term>
<term>Foie</term>
<term>Maladies du foie</term>
<term>Oxygène</term>
<term>Syndrome métabolique X</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Apoptosis</term>
<term>HEK293 Cells</term>
<term>Hep G2 Cells</term>
<term>Humans</term>
<term>Male</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Molecular Sequence Data</term>
<term>Mutation</term>
<term>Oxidation-Reduction</term>
<term>Oxidative Stress</term>
<term>Sequence Homology, Amino Acid</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Apoptose</term>
<term>Cellules HEK293</term>
<term>Cellules HepG2</term>
<term>Données de séquences moléculaires</term>
<term>Humains</term>
<term>Mutation</term>
<term>Mâle</term>
<term>Oxydoréduction</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Souris</term>
<term>Souris de lignée C57BL</term>
<term>Stress oxydatif</term>
<term>Séquence d'acides aminés</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Sirtuin-1 (SirT1), a member of the NAD(+)-dependent class III histone deacetylase family, is inactivated in vitro by oxidation of critical cysteine thiols. In a model of metabolic syndrome, SirT1 activation attenuated apoptosis of hepatocytes and improved liver function including lipid metabolism. We show in SirT1-overexpressing HepG2 cells that oxidants (nitrosocysteine and hydrogen peroxide) or metabolic stress (high palmitate and high glucose) inactivated SirT1 by reversible oxidative post-translational modifications (OPTMs) on three cysteines. Mutating these oxidation-sensitive cysteines to serine preserved SirT1 activity and abolished reversible OPTMs. Overexpressed mutant SirT1 maintained deacetylase activity and attenuated proapoptotic signaling, whereas overexpressed wild type SirT1 was less protective in metabolically or oxidant-stressed cells. To prove that OPTMs of SirT1 are glutathione (GSH) adducts, glutaredoxin-1 was overexpressed to remove this modification. Glutaredoxin-1 overexpression maintained endogenous SirT1 activity and prevented proapoptotic signaling in metabolically stressed HepG2 cells. The in vivo significance of oxidative inactivation of SirT1 was investigated in livers of high fat diet-fed C57/B6J mice. SirT1 deacetylase activity was decreased in the absence of changes in SirT1 expression and associated with a marked increase in OPTMs. These results indicate that glutathione adducts on specific SirT1 thiols may be responsible for dysfunctional SirT1 associated with liver disease in metabolic syndrome. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24451382</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>05</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>289</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2014</Year>
<Month>Mar</Month>
<Day>14</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>A redox-resistant sirtuin-1 mutant protects against hepatic metabolic and oxidant stress.</ArticleTitle>
<Pagination>
<MedlinePgn>7293-306</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M113.520403</ELocationID>
<Abstract>
<AbstractText>Sirtuin-1 (SirT1), a member of the NAD(+)-dependent class III histone deacetylase family, is inactivated in vitro by oxidation of critical cysteine thiols. In a model of metabolic syndrome, SirT1 activation attenuated apoptosis of hepatocytes and improved liver function including lipid metabolism. We show in SirT1-overexpressing HepG2 cells that oxidants (nitrosocysteine and hydrogen peroxide) or metabolic stress (high palmitate and high glucose) inactivated SirT1 by reversible oxidative post-translational modifications (OPTMs) on three cysteines. Mutating these oxidation-sensitive cysteines to serine preserved SirT1 activity and abolished reversible OPTMs. Overexpressed mutant SirT1 maintained deacetylase activity and attenuated proapoptotic signaling, whereas overexpressed wild type SirT1 was less protective in metabolically or oxidant-stressed cells. To prove that OPTMs of SirT1 are glutathione (GSH) adducts, glutaredoxin-1 was overexpressed to remove this modification. Glutaredoxin-1 overexpression maintained endogenous SirT1 activity and prevented proapoptotic signaling in metabolically stressed HepG2 cells. The in vivo significance of oxidative inactivation of SirT1 was investigated in livers of high fat diet-fed C57/B6J mice. SirT1 deacetylase activity was decreased in the absence of changes in SirT1 expression and associated with a marked increase in OPTMs. These results indicate that glutathione adducts on specific SirT1 thiols may be responsible for dysfunctional SirT1 associated with liver disease in metabolic syndrome. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Shao</LastName>
<ForeName>Di</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>From the Vascular Biology Section and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fry</LastName>
<ForeName>Jessica L</ForeName>
<Initials>JL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Han</LastName>
<ForeName>Jingyan</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hou</LastName>
<ForeName>Xiuyun</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pimentel</LastName>
<ForeName>David R</ForeName>
<Initials>DR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Matsui</LastName>
<ForeName>Reiko</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cohen</LastName>
<ForeName>Richard A</ForeName>
<Initials>RA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bachschmid</LastName>
<ForeName>Markus M</ForeName>
<Initials>MM</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>HHSN268201000031C</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 HL007224</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HL007224</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HHSN268201000031C</GrantID>
<Agency>PHS HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P01 HL068758</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P01 HL 068758</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R37 HL104017</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>01</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016877">Oxidants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D026361">Reactive Nitrogen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.5.1.-</RegistryNumber>
<NameOfSubstance UI="C447939">SIRT1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.5.1.-</RegistryNumber>
<NameOfSubstance UI="C470545">Sirt1 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.5.1.-</RegistryNumber>
<NameOfSubstance UI="D056564">Sirtuin 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>S88TT14065</RegistryNumber>
<NameOfSubstance UI="D010100">Oxygen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017209" MajorTopicYN="Y">Apoptosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057809" MajorTopicYN="N">HEK293 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056945" MajorTopicYN="N">Hep G2 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008099" MajorTopicYN="N">Liver</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008107" MajorTopicYN="N">Liver Diseases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024821" MajorTopicYN="N">Metabolic Syndrome</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="Y">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016877" MajorTopicYN="N">Oxidants</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="Y">Oxidative Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010100" MajorTopicYN="N">Oxygen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026361" MajorTopicYN="N">Reactive Nitrogen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056564" MajorTopicYN="N">Sirtuin 1</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Glutathiolation</Keyword>
<Keyword MajorTopicYN="N">Glutathionylation</Keyword>
<Keyword MajorTopicYN="N">High Fat High Sucrose Diet</Keyword>
<Keyword MajorTopicYN="N">Metabolic Diseases</Keyword>
<Keyword MajorTopicYN="N">Oxidative Stress</Keyword>
<Keyword MajorTopicYN="N">Polyphenols</Keyword>
<Keyword MajorTopicYN="N">Reactive Oxygen and Nitrogen Species</Keyword>
<Keyword MajorTopicYN="N">Resveratrol</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>1</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>1</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>5</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24451382</ArticleId>
<ArticleId IdType="pii">M113.520403</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M113.520403</ArticleId>
<ArticleId IdType="pmc">PMC3953247</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2007 Mar 2;282(9):6823-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17197703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Liver Int. 2007 Jun;27(5):708-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17498258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Physiol Biochem. 2007;20(1-4):45-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17595514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hepatology. 2007 Sep;46(3):823-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17680645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2007 Nov;9(11):1253-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17934453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2007 Dec;32(12):555-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17980602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nutr. 2008 Mar;138(3):497-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18287356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2008 Apr;10(4):385-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18344989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2009 Apr 10;381(3):372-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19236849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2009 Apr;9(4):327-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19356714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Endocrinol. 2009 Nov;23(11):1876-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19819989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(12):e8414</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20027304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Pathol. 2010;5:253-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20078221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2010 Feb;120(2):545-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20071779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2010 Apr;5(4):725-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20360767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cancer Ther. 2010 Apr;9(4):844-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20371709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(8):e23160</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21826235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cardiovasc Pharmacol. 2011 Sep;58(3):263-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21654327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Endocrinol Metab. 2011 Dec;301(6):E1198-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21917631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2011 Dec 23;44(6):851-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22195961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Endocrinol Metab. 2009 Nov;297(5):E1179-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19724016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2012 Feb 3;148(3):421-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22304913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biochem. 2012 May;364(1-2):115-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22246806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circulation. 2012 Apr 10;125(14):1757-64, S1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22388319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Jul 6;287(28):23489-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22553202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Rev. 2012 Jul;92(3):1479-514</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22811431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Mar 8;339(6124):1216-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23471411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2013;13:60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23497088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetologia. 2013 May;56(5):1068-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23397292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2013 May;19(5):557-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23652116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(6):e65415</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23755229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2013;3:2806</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24076663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Investig Drugs. 2008 Apr;9(4):371-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18393104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Jul 18;283(29):20015-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18482975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9793-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18599449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2008 Jul 15;7(14):2117-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18641460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Nov;10(11):1941-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18774901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14447-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18794531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2008 Nov;33(11):517-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18805010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008;3(12):e4020</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19107194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 Nov 1;19(13):1507-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23461683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Vet Res. 2013;9:187</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24073959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2013 Nov 14;5(3):654-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24210820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Quant Cytol Histol. 2001 Aug;23(4):291-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11531144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2001 Oct 19;107(2):137-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11672522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2001 Oct 19;107(2):149-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11672523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2002 May 15;21(10):2383-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12006491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1931-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12574499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Apr 23;285(17):13223-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20167603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010;5(5):e10486</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20463968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2010 Oct 1;13(7):1023-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20392170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2010 Sep;24(9):3145-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20385619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2010 Nov;12(11):1094-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20972425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2011 Feb 1;433(3):505-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21044047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2011 Apr 6;13(4):376-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21459323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Jun 24;286(25):22227-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21540183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Feb;11(2):437-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12620231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Jul;12(1):51-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12887892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gastroenterology. 2003 Aug;125(2):437-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12891546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):10794-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12960381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2004 Mar 26;337(3):635-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15019783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Clin Lab Sci. 2004 Winter;34(1):57-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15038668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 May 25;101(21):7891-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15148403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2004 Jun 16;23(12):2369-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15152190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Gastroenterol. 2004 Sep;99(9):1708-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15330907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Nov 12;279(46):47898-905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15371448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Apr 22;280(16):16456-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15716268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Nov 4;123(3):437-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16269335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Jan 27;124(2):315-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16439206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Sep 8;126(5):941-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16959573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Gastroenterol. 2006 Nov-Dec;40(10):930-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17063114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Feb 23;25(4):543-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17317627</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Bachschmid, Markus M" sort="Bachschmid, Markus M" uniqKey="Bachschmid M" first="Markus M" last="Bachschmid">Markus M. Bachschmid</name>
<name sortKey="Cohen, Richard A" sort="Cohen, Richard A" uniqKey="Cohen R" first="Richard A" last="Cohen">Richard A. Cohen</name>
<name sortKey="Fry, Jessica L" sort="Fry, Jessica L" uniqKey="Fry J" first="Jessica L" last="Fry">Jessica L. Fry</name>
<name sortKey="Han, Jingyan" sort="Han, Jingyan" uniqKey="Han J" first="Jingyan" last="Han">Jingyan Han</name>
<name sortKey="Hou, Xiuyun" sort="Hou, Xiuyun" uniqKey="Hou X" first="Xiuyun" last="Hou">Xiuyun Hou</name>
<name sortKey="Matsui, Reiko" sort="Matsui, Reiko" uniqKey="Matsui R" first="Reiko" last="Matsui">Reiko Matsui</name>
<name sortKey="Pimentel, David R" sort="Pimentel, David R" uniqKey="Pimentel D" first="David R" last="Pimentel">David R. Pimentel</name>
<name sortKey="Shao, Di" sort="Shao, Di" uniqKey="Shao D" first="Di" last="Shao">Di Shao</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000684 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000684 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24451382
   |texte=   A redox-resistant sirtuin-1 mutant protects against hepatic metabolic and oxidant stress.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24451382" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020